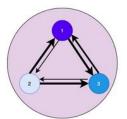
HipoRank: Discourse-Aware Unsupervised Summarization Long Scientific Documents

TL;DR

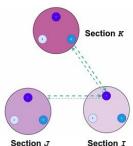
Motivation: leverage the discourse structure of scientific articles in unsupervised summarization. **Method:** graph-based sentence ranking algorithm with two-level section hierarchy and directed edges weighted by asymmetric positional cues.


Results: performs much better than previous unsupervised approaches and comparable to many supervised model on PubMed/ArXiv datasets.

<u>Takeaway:</u> discourse structure is highly useful for determining sentence importance in scientific docs.

Incorporating Discourse Structure

Intra-Section Edges


A sentence's importance depends on its relation to same-section sentences

Section I

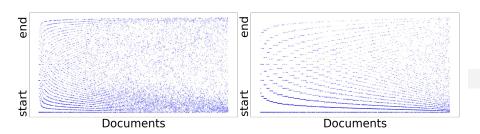
Inter-Section Edges

A sentence's importance depends on its relation to other sections

Edges are weighted more if they point to a sentence near a section start or end

Boundary Function

$$c(v_i^I) = \mu_1 \cdot c_{\text{inter}}(v_i^I) + c_{\text{intra}}(v_i^I)$$


$$c_{\text{intra}}(v_i^I) = \sum_{v_i^I \in I} \frac{w_{ji}^I}{|I|} \quad c_{\text{inter}}(v_i^I) = \sum_{v^J \in D} \frac{w_i^{JI}}{|D|}$$

$$w_{ji}^{I} = \begin{cases} \lambda_1 * sim(v_j^{I}, v_i^{I}), & \text{if } d_b(v_i^{I}) \geq d_b(v_j^{I}), \\ \lambda_2 * sim(v_j^{I}, v_i^{I}), & \text{if } d_b(v_i^{I}) < d_b(v_j^{I}), \end{cases}$$
where $\lambda_1 < \lambda_2$

$$d_b(v_i^I) = \min(x_i^I, \alpha(n^I - x_i^I))$$
 n^I is the number of sentences in section I
 x_i^I represents sentence i 's position in section I

Discourse Structure in Scientific Articles

Discourse structure suggested by sentence position (y-axis) and ROUGE-2 (color) is different in scientific articles (left, PubMed) and news articles (right, CNN)

Results on PubMed/ArXiv

Test set results on PubMed (ROUGE F1): Test set results on arXiv (ROUGE F1):

Model	ROUGE-1	ROUGE-2	ROUGE-L	Model
Lead	35.63	12.28	25.17	Lead
Oracle (ROUGE-2, F1)	55.05	27.48	38.66	Oracle (ROUGE-
Unsuperv	ised Extrac	tive		U
SumBasic (2007)	37.15	11.36	33.43	SumBasic (2007)
LSA (2004)	33.89	9.93	29.70	LSA (2004)
LexRank (2004)	39.19	13.89	34.59	LexRank (2004)
PACSUM (2019)	39.79	14.00	36.09	PACSUM (2019)

HIPORANK (ours)

Model	ROUGE-1	ROUGE-2	ROUGE-I
Lead	33.66	8.94	22.19
Oracle (ROUGE-2, F1)	53.88	23.05	34.90
Unsuperv	ised Extrac	tive	
SumBasic (2007)	29.47	6.95	26.30
LSA (2004)	29.91	7.42	25.67
I D I- (2004)	22.05	10.72	20.00

Human Evaluation Results on PubMed

Model	Content-coverage	Importance
PACSUM	30.52	48.70
HIPORANK (ours)	42.13	59.06

Fleiss K: 46.56/41.37 for content-coverage/importance respectively

Coverage: Does it cover content from the abstract?

Importance: Is it important for a goal-oriented reader (Lin and How 1997)

Conclusions

12.56 34.89

Discourse structure is highly useful for determining sentence importance in scientific documents, which HipoRank leverages into a strong unsupervised baseline.