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ABSTRACT 
Data-driven research in Additive Manufacturing (AM) has 

gained significant success in recent years. This has led to a 
plethora of scientific literature to emerge. The knowledge in 
these works consists of AM and Artificial Intelligence (AI) 
contexts that haven’t been mined and formalized in an integrated 
way. It requires substantial effort and time to extract scientific 
information from these works. AM domain experts have 
contributed over two dozen review papers to summarize these 
works. However, information specific to AM and AI contexts still 
requires manual effort to extract. The recent success of 
foundation models such as BERT (Bidirectional Encoder 
Representations for Transformers) or GPT (Generative Pre-
trained Transformers) on textual data has opened the possibility 
of expediting scientific information extraction. We propose a 
framework that enables collaboration between AM and AI 
experts to continuously extract scientific information from data-
driven AM literature. A demonstration tool is implemented based 
on the proposed framework and a case study is conducted to 
extract information relevant to the datasets, modeling, sensing, 
and AM system categories. We show the ability of LLMs (Large 
Language Models) to expedite the extraction of relevant 
information from data-driven AM literature. In the future, the 
framework can be used to extract information from the broader 
design and manufacturing literature in the engineering 
discipline.  

Keywords: Scientific Information Extraction, Design, 
Manufacturing, Large Language Models, Human-AI Teaming 
 
1. INTRODUCTION 

Additive manufacturing (AM), commonly known as 3D 
printing, fabricates parts layer-by-layer [1]. Offering unique 
benefits, the process can rival conventional manufacturing 
techniques. This has inspired significant research efforts into the 
technology aimed at enhancing its maturity for industrial 

adoption. A major portion of the research from recent years has 
relied on machine learning (ML) or deep learning (DL)-based 
approaches following the success of advanced data analytics 
techniques [2, 3]. The scientific works at the intersection of two 
growing disciplines are extremely information-rich. It is critical 
to extract relevant information from the incoming literature flux 
in order to reproduce and adapt these solutions for real-world 
applications. 

The plethora of emerging literature has led to several state-
of-the-art reviews to summarize the development and highlight 
the future of technology [1-3]. These reviews are divided across 
process technologies, applications, and solution types with 
varying scopes. This leads to subjective and time-irrelevant 
information being captured. The efforts to summarize data-
driven AM research are limited in scope due to several reasons 
and fail to provide an all-encompassing reusable approach to 
information retrieval. Solutions capable of extracting the most 
relevant information from data-driven AM research are needed 
that can be re-used across a range of topics (e.g., technologies, 
applications, and data analytics solutions) in the field. 

The challenge of extracting relevant information from 
science and engineering publications is not new and dates back 
to the 1960s [4]. Many scientific disciplines are faced with the 
high flux of newly published literature limiting access to relevant 
information [5]. As a result, Scientific Information Extraction, or 
SciIE is an established field though its maturity varies across 
disciplines. In general, Information Extraction or IE refers to a 
set of techniques in Natural Language Processing (NLP) that 
enable automated retrieval of structured information from text 
[6]. The solution to extract information can take many forms 
once the raw data is processed and cleaned. In their review on 
SciIE, Hong et al. identified vocabulary generation, text 
classification, named entity recognition, and relationship 
extraction as some of the steps in the information retrieval 
pipeline [7]. 
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FIGURE 1: INFORMATION EXTRACTION FRAMEWORK WITH BASE IE SYSTEM (Left), PARAGRAPH CLASSIFICATION TIER 
(Middle), AND QUERY TIER (Right). THE SUBCOMPONENTS ARE EXPLAINED IN THE FRAMEWORK AND CASE STUDY SECTIONS 
 

SciIE techniques can be broadly classified into traditional 
methods or more recent approaches based on ML or DL. In the 
past, structured information extraction in SciIE has relied on 
manual curation and data mining methods. This required domain 
experts to manually annotate and index research papers, which 
took a lot of time and resources [7]. However, recent 
advancements in NLP and ML have revolutionized the 
field. Modern approaches use DL models like transformers to 
automatically extract useful information from unstructured text 
[8]. These models can identify key entities, relationships, and 
contextual information from scientific documents, enabling 
rapid and scalable IE. Additionally, modern methods take 
advantage of domain expertise to improve the precision and 
relevance of information retrieved. This combination of 
traditional curation and cutting-edge technology has the potential 
to significantly accelerate scientific discovery and information 
retrieval in research domains such as data-driven AM. 

Large language models or LLMs are based on transformer 
architectures (models designed for sequence-to-sequence tasks) 
and employ self-attention which enables the model to weigh the 
importance of different segments within the text [9]. Their 
introduction has been a breakthrough in AI and their capabilities 
make them well-suited for key NLP tasks including IE. While 
LLMs can support IE in various ways, their direct application in 
scientific disciplines may lead to lower performance. There are 
several reasons that can result in model hallucination such as 
domain specificity, limited context, ambiguity, outdated 

knowledge, low signal-to-noise ratio, and data privacy. There is 
a need to overcome this gap when leveraging powerful LLMs for 
SciIE. 

To utilize LLMs for effective IE in data-driven AM, this 
work proposes a human (domain expert) centered approach 
integrating text retrieval, classification, and generation models. 
We particularly focus on making the extraction process 
transparent by having human review and feedback incorporated 
at each step. The remainder of the paper is as follows. Section 2 
introduces the framework. Section 3 demonstrates the human-
centered features. Section 4 details the case study and its steps. 
Section 5 presents the results and discussions. We conclude this 
article with concluding remarks and future works in Section 6. 
 
2. INFORMATION EXTRACTION FRAMEWORK 

The proposed IE framework is divided into three major 
components namely the base IE system, paragraph classification 
tier, and the query tier. The base IE system acts as the engine of 
the IE framework and allows AM and AI researchers to interact 
through a GUI to iteratively improve the answers coming from 
the query tier. Figure 1 presents an overview of the framework 
and outlines the key steps of each component. These components 
are explained in detail below.  
 
2.1 Base IE System 

The base IE system acts as the engine of our IE framework 
allowing users to upload scientific articles as PDF files, parsing 
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the PDF files into paragraphs and equations for downstream 
retrieval, allowing AM experts to search relevant paragraphs 
through regular or semantic search, and customizing retrievals to 
effectively shortlist relevant paragraphs. 

 Based on the methodology of Lo et al., the base IE system 
processes user-provided PDFs of scientific AM articles with 
GROBID [10]. Metadata such as publication title, abstract, 
authors, date and DOI are first extracted. Then GROBID parses 
a paper’s paragraphs and equations organized by section; as well 
as figures, tables and references (with corresponding links in the 
text). Lastly, the different parsing outputs are saved to the user’s 
library for use in the IE system, along with the original PDFs for 
user reference. Despite its widespread use, GROBID still 
struggles with certain PDFs, displaying parsing errors like 
missing or duplicate paragraphs, invalid organization of sections, 
incorrect or missing metadata, and illegible equations. In 
alignment with our human-centered considerations, we ensure 
transparency and iterative improvement by letting users view 
and correct parsed results with the original PDFs for reference. 

IE systems typically involve an information retrieval (IR) 
step, where relevant documents are first retrieved [11]. Because 
our use case involves extracting information from a given paper, 
we retrieve relevant paragraphs instead. Specifically, we 
generate embeddings for paragraphs and for queries associated 
with four categories of interest defined by the AM experts (e.g., 
data, modeling, sensing, and AM systems) We use cosine 
similarity to retrieve the paragraphs that are most similar to a 
given query. Because of computational constraints and 
maintainability concerns associated with hosting the IE system, 
we decided to use the OpenAI embeddings API instead of our 
own models. 

While we could perform IE on the full text of a paper, this 
has significant drawbacks that motivate paragraph retrieval. 
First, for a given information item, typically only a small portion 
of the full text contains the desired information. Conversely, 
feeding full-texts into our LLM-based IE model is infeasible or 
too costly to be viable. Second, limiting our LLM-based IE 
model to retrieved paragraphs —which are typically quickly 
readable and self-coherent— enables rapid and easy user-
verification of our IE system’s output by cross-referencing with 
retrieved passages. As errors are inevitable in any IE system, and 
pernicious with LLMs, this human-centered consideration helps 
build trust through transparency (Explained in Section 3.2). 

Similar to Dunn et al., we use LLMs to perform IE on 
scientific texts with a sequence-to-sequence formulation [12]. 
However, in the process of participatory design (Explained in 
Section 3.4), we found that rigidly structured outputs did not lend 
themselves well to extracting specific information items across 
multiple categories. Instead, we prompt the LLM to synthesize 
the retrieved passages, extracting the information that is relevant 
to the query of a given information item, or clearly indicating 
cases where no such information is present. As mentioned 
earlier, we use the OpenAI chat API instead of our own models 
due to constraints on computational resources and 
maintainability. 

As seen in Figure 2, the query used to prompt the LLM-
based IE model may or may not be appropriate for retrieving 
relevant paragraphs. Throughout development, this became 
rapidly apparent, and users began experimenting with different 
retrieval queries and building intuitions for common failure 
mechanisms and working mitigations. However, sharing queries 
between the IR and IE systems limits the flexibility afforded to 
users in designing a query, as it is constrained to being a valid 
instruction interpretable by the LLM-based IE system. 

To address this limitation and enable iterative improvement 
(Explained in Section 3.2), we create an interface that allows 
users to create and update custom retrievals with ensembles of 
positive and negative queries Q+ and Q−, as well as positive and 
negative paragraphs P+ and P−. Positive queries are meant to 
retrieve similar paragraphs, while negative queries are meant to 
prevent retrieving similar paragraphs. Conversely, when 
retrieving paragraphs, users can annotate these as positive or 
negative to obtain a similar effect. The interfaces for these 
functionalities are shown in Figure 2 (B-E). Concretely, we 
compute a retrieval embedding R as a sum of the averages of 
these embeddings, weighted by a, b, c, d: 
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While simple, this human-in-the-loop approach enables 

users to improve retrieval in a way that is intuitive and enables 
fine-grained control or experimentation; all the while not 
interfering with or being constrained by the IE system query. 
 
2.2 Paragraph Classification Tier  

We expect to find the relevant information in specific 
paragraphs and hence there is value in training paragraph 
classifiers to further expedite the IE process. In the long term, 
classifiers specific to a certain domain can quickly filter the 
relevant paragraph from the whole article. These relevant 
paragraphs can then be used in the query tier to provide specific 
answers to the readers. It is also important to mention that 
currently the paragraph classification is done at an abstract level 
(e.g., data as compared to specific data characteristics or 
modeling as compared to specific modeling details) to use 
shallow and light-weight classifiers that simplify the training 
process.  

One of the key goals at this stage is to prepare global 
classifier(s) for each field to quickly filter the relevant paragraph 
from irrelevant. The accuracy of the classifiers is expected to 
grow gradually as the domain experts read through the papers 
and label the paragraphs in the base IE system. As a result, this 
will incrementally decrease the effort of manually going through 
each article in the base IE system. Nonetheless, the long-term 
effectiveness of these classification models will depend on 
regular fine-tuning with newly labeled paragraphs. This could be 
inspired by the poor performance of the trained classifiers on 
certain components of scientific information.  

 
𝑙 =  𝜎(𝑤

்𝑝 +  𝑏)                                                          (2) 
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In the proposed framework, multilabel l(i,j) paragraph (Pi) 
classification models (e.g., Equation 2) are being built offline on 
top of the data labeled in the base IE system. This is to provide 
flexibility in the choice of a model (shallow vs deep, binary, 
multi-class or multi-label) that works best for each scientific 
domain. The functionality to deploy trained models online by 
integrating them into the base IE system can be implemented in 
the future.  

 
2.3 Query Tier 

The question or query tier represents the last component of 
the proposed IE framework. It simply allows the users to ask a 
specific question and expect a well-formulated answer. For this 
purpose, the filtered paragraphs are fed into a GPT model along 
with the user query to output the answer. Currently, a query 
function is available in the base IE system to directly filter the 
information. In the future, we expect query functions to also 
interact with the outputs of classification models once these are 
integrated into the base IE system. Equation 3 represents the 
structure of the prompt where both query (Q) and paragraphs (Pi) 
are fed to the model while being kept apart through a separator 
(SEP). 
 
𝐺𝑃𝑇 =  𝑄 + |𝑆𝐸𝑃| + 𝑃ଵ … + |𝑆𝐸𝑃| +  𝑃                            (3) 
 
3. HUMAN-AI TEAMING FEATURES 

The Human-AI teaming is central to the proposed IE 
framework to keep both AM and AI researchers in the loop as 
the information retrieval pipelines specific to a certain domain 
are optimized. These are oftentimes referred to as human-
centered considerations in the broader NLP literature. In the 
context of data discovery, a problem similar to IE, Gregory and 
Koesten refine the notion of “human-centered” as thinking from 
the perspective of the person(s) engaging in the activity; with a 
focus on the interaction process and the "user" experience, taking 
into account different contexts and needs [13]. In a different vein, 
Egan et al. present “user-centered” NLP systems as a human-
computer collaboration where computers do what they do well 
(process large amounts of information, filter, sort and prioritize) 
and humans do what they do well (assess, select, and refine with 
domain expertise) [14]. And lastly, on a more abstract level, 
Kotnis et al. define “human-centric” NLP research as a process 
where human stakeholders actively participate in the research 
[15]. In this section, we discuss several human-centered 
considerations which relate to these formulations and have 
influenced the development of our IE system.  

 
3.1 User Interface  

A prototype tool is implemented that reflects the base IE 
system explained in the previous section. Figure 2 shows an 
overview of the tool. The tool provides several functionalities to 
the users including the option to create libraries to group PDF 
files from similar domains. Each library provides a list of papers 
and highlights the author and publication data. The uploaded 
PDF files can be viewed as-is. In addition, a simple text search 
or semantic search can be performed on the parsed PDF files. 

The Query tab represents the option to write specific queries. The 
Retrieval tab highlights the functionality to create retrievals and 
iteratively update them by labeling the paragraphs as positive or 
negative. The user interface enables several human-centric 
features that are explained in the following subsections. 

 
3.2 Transparency and Trust  

IE systems ideally improve the efficiency of their users, 
however, Schleith et al. suggest that a lack of transparency can 
lead to a lack of trust [16]. This lack of trust can in turn undo 
efficiency gains as users spend more time carefully reviewing 
system outputs they do not trust. Similarly, but in the context of 
LLM-generated summaries, Cheng et al. present appropriate 
trust as enabling users to decide whether or not to rely on a given 
system output; which in turn requires transparency [17]. These 
challenges are all-the-more important for LLMs, which are 
known to generate convincing but erroneous confabulations.  

We build our IE system around this human-centered 
consideration of trust by transparency in a variety of ways. First, 
as noted in the base IE system, errors are introduced as early as 
the data parsing stage. By overlaying interactions with the IE 
system on top of this raw data, we enable users to more easily 
catch and correct errors related to parsing, building appropriate 
trust. Additionally, transparency on the data level is essential for 
mitigating potential issues of data cascades [18]. 

As mentioned in Section 2.1, we also introduce an 
intermediate retrieval step before performing LLM-based IE. 
While this can improve factual consistency, it does not 
completely prevent confabulation [19]. However, adapting the 
interface to enable streamlined cross-referencing of system 
outputs with retrieved passages (specifically paragraphs, to 
facilitate quick verification) builds appropriate trust where 
eliminating errors is otherwise infeasible. 

 
3.3 Iterative Improvement  

While transparency builds appropriate trust by supporting 
users in deciding whether to rely on system outputs or not, 
iterative improvements in IE systems can minimize the rate at 
which users should decide not to rely on a given output, 
improving their experience. More specifically, human feedback 
with human-in-the-loop approaches can be leveraged to improve 
the reliability of IE system outputs [20]. We adapt this human-
centered consideration by enabling users to create custom 
retrievals where they can provide feedback on retrieved passages 
and iteratively improve the reliability of the custom retrieval. 
More generally, Rahman and Kandogan find that human-in-the-
loop IE workflows are typically iterative in nature, characterized 
by information foraging and sensemaking loops as users 
iteratively improve their understanding of the task and the data 
[21]. We try to support this consideration and give users the 
flexibility required for this kind of iteration. Notably, we give 
users fine-grained control over the underlying retrieval and 
extraction systems so they can experiment with different 
approaches.  
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FIGURE 2: OVERVIEW OF THE PROTOTYPE TOOL IMPLEMENTED. (A) REPRESENTS THE MAIN VIEW OF THE TOOL IN A WEB 
BROWSER ONCE THE IE VALIDATION CHECKLIST OF 100 PAPERS IS SELECTED. THE PAPERS ARE LISTED ON THE LEFT SIDE 
WHEREAS THE PDF OF THE SELECTED PAPER IS SHOWN ON THE RIGHT. (B) REPRESENTS THE STRING-BASED TEXT SEARCH 
FUNCTION. (C) REPRESENTS THE SEMANTIC SEARCH WHICH VECTORIZES USER QUERY FOR COSINE SIMILARITY. THE 
RESULTING TOP FIVE PARAGRAPHS ARE HIGHLIGHTED. THE ARROWS NEXT TO THE SEARCH BUTTON ENABLE USER 
VERIFICATION OF THE OUTPUT WITH EASY NAVIGATION BETWEEN RETRIEVED PARAGRAPHS USED BY THE IE SYSTEM. THE 
HUE OF THE HIGHLIGHT INDICATES THE STRENGTH OF THE COSINE SIMILARITY BETWEEN THE QUERY AND THE PASSAGE. (D) 
REPRENTS THE QUERY FUNCTION AND THE RESULTING ANSWER GENERATED FROM TOP FIVE RELEVANT PARAGRAPHS. (E) 
REPRESENTS THE FUNCTIONALITY TO CREATE, SELECT AND UPDATE A RETRIEVAL
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3.4 Participatory Design  
An important consideration throughout this work has been 

participatory design: ensuring a relationship of meaningful co-
creation and mutual learning between users and researchers [22, 
23]. This collaborative approach between developers (machine 
learning researchers) and users (mechanical engineering 
researchers) enabled iterative refinements throughout the 
development of the IE system prototype; from initial 
brainstorming and problem formulation to interface adaptations 
that address user-identified limitations of the underlying 
machine learning models. Crucially, our approach is 
fundamentally human-in-the-loop rather than human-on-the-
loop. In other words, users and researchers actively participate in 
a task rather than passively supervising or validating its 
automated completion. We found this dynamic played a 
significant role in fostering participatory design throughout 
development. 

 
4. CASE STUDY 

Inspired by the increasing scientific publications as shown 
in Figure 3, a case study was conducted using literature at the 
intersection of AM and ML. It is particularly challenging to find 
key components of information quickly and effectively from 
literature at the intersection of two growing fields. The tool 
enables an interactive way to query the information required and 
hence provides an opportunity to go through the literature 
quickly as compared to relying on existing reviews. The reviews 
become outdated with time and are limited in the way 
information can be represented. In addition to providing a faster 
and effective way to retrieve key information components, the 
tool can be used for other domains and applications so as to 
provide a reproducible pipeline for SciIE.  
  

 
FIGURE 3: THE PLOT HIGHLIGHTS THE INCREASING 
LITERATURE IN ADDITIVE MANUFACTURING INSPIRING 
THE CREATION OF AN AI TOOL TO QUICKLY AND 
EFFECTIVELY FILTER KEY SCIENTIFIC INFORMATION. 

  
4.1 Defining Relevant AM+AI Information  

We categorized the information contained within the data-
driven AM literature into four categories which jointly represent 
most of the key information required to understand and evaluate 
the presented research. These categories are listed below: 

- Data Relevant: Information representing data for ML 
applications such as data characteristics, experimental settings, 
data preparation, data processing, and data availability [24, 25]. 
-  Model Relevant: Information related to ML-based modeling 
such as the algorithm, training process, the compute hardware & 
software, and model availability.  
-  Sensing Relevant: Information relevant to sensing technique 
and equipment such as the physical phenomenon, sensor type, 
sensor specifications, sensor settings, and sensor deployment. 
- System Relevant: Information representing manufacturing 
technology, hardware, and materials used  
 
4.2 Collecting Research Articles  

In order to conduct the case study, we retrieved 100 research 
articles representing ML-based research on in-process 
monitoring and quality prediction challenges in AM. The latest 
publication year among the articles is 2023 whereas no limit was 
set on the starting year. These papers represent a diverse and 
comprehensive body of research in ML-driven AM research. All 
articles were collected from Scopus. The decision to use 100 
research articles to validate the IE pipeline was made to get a 
representative dataset spanning various subdomains in AM and 
ML. The PDF files of all articles were downloaded and grouped 
into an “IE Validation” library inside the prototype tool. As soon 
as the PDF of an article is uploaded, it is parsed at the backend 
to support subsequent search, labeling, and retrieval.  

 
4.3 Searching, Labeling and Retrieval Customization 

Once the PDF files were added in the prototype tool, these 
were parsed to act as the input of the embedding model. The 
current version of the prototype tool used the OpenAI text-
embedding-ada-002 model to provide a paragraph-level vector 
representation of the parsed PDF files. This set the stage to find 
relevant information through semantic search where input query 
was also featurized using the same model and the two were 
compared using cosine similarity. However, in the case study, 
we relied primarily on the retrieval functionality (Figure 4) and 
iteratively updated it by selecting positive and negative 
paragraphs to compute the retrieval embedding of Equation 1. 
As will be shown in the results, the ranking results and score 
gradually improved as we went through the papers labeling the 
paragraphs. This reflected the effectiveness of customizing the 
retrievals specific to each relevant information category. 

Where specific information was not found in the top 
highlighted paragraphs from customized retrievals, we used 
search functionality to find it. If the relevant paragraphs were 
found through the search functionality, they were labeled as 
positive to include them in the retrieval embedding. Similarly, 
where irrelevant paragraphs were found in the top results of a 
specific retrieval, these were marked as negative to be excluded 
from future results. Figure 5 shows the relevant and irrelevant 
paragraphs highlighted as positive and negative to account their 
respective embeddings in the overall retrieval embedding. The 
labeling process led to a multi-label text dataset for ML-driven 
AM literature to be used in the next step. To the best of the 
author’s knowledge, this is the first NLP dataset in AM [24, 26]. 
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FIGURE 4: RETRIEVAL CREATION WINDOW. A RETRIEVAL 
CAN BE NAMED AND POPULATED WITH POSITIVE 
(RELEVANT E.G., DATA, MODEL) AND NEGATIVE QUERIES 
(IRRELEVANT E.G., RELATED WORKS SECTION). WE 
CREATED FOUR RETRIEVALS AS SHOWN IN THE APPENDIX. 
 

 
FIGURE 5: A POPULATED RETRIEVAL (DATA RELEVANT IN 
THIS CASE) CAN BE CUSTOMIZED BY SELECTING THE 
RELEVANT AND IRRELEVANT PARAGRAPHS. BY CLICKING 
ON A PLUS SIGN BUTTON, PARAGRAPHS CAN BE ADDED TO 
P+ TO INCREASE THE CHANCE OF RETRIEVING SIMILAR 
PARAGRAPHS FOR A GIVEN CUSTOMIZED RETRIEVAL. WE 
CAN ALSO ADD PARAGRAPHS TO P− TO REDUCE THE 
CHANCE OF RETRIEVING SIMILAR PARAGRAPHS FOR THE 
SAME CUSTOMIZED RETRIEVAL. 
 
4.4 Classifying Paragraphs 

The resulting multi-label paragraph dataset was downloaded 
from the prototype tool and used to develop paragraph classifiers 
as global domain models to rapidly filter relevant paragraphs for 
downstream IE. The raw dataset represented 5039 paragraphs 

labeled into four relevant categories namely data, model, 
sensing, and system. We introduced a fifth category for 
paragraphs that didn’t belong to any of the above-mentioned 
categories as “irrelevant.” This was done to evaluate the effect 
of including these paragraphs in the learning process. However, 
their inclusion introduced data imbalance, and these were 
subsequently removed as a redundant category label.  

The dataset was processed using the OpenAI embedding 
model to generate feature vectors for each paragraph. The 
augmented dataset was used to train a Random Forest classifier 
from the Scikit-learn library. Since the classifier doesn’t natively 
support multi-target classification, we used the built-in 
MultiOutputClassifier strategy. We trained a simple multi-label 
model as a global classifier for ML-based AM literature. The 
classifier can categorize the paragraph into four categories of 
relevant information. However, irrelevant paragraphs will 
require to be filtered and out-of-balanced classes should be 
down-sampled for future training of the model. The results are 
presented in the next Section.   

 
4.5 Query and Response  

During the case study, we used a query function that 
prompts an LLM to extract the relevant information by providing 
both a user query and the relevant paragraph(s) to generate the 
answer. This functionality can be used both during the labeling 
process to find missing information as well as after the classifiers 
have been trained to filter the relevant paragraphs. Table 1 shows 
the function used to prompt. 

 
TABLE 1: FUNCTION TO PROMPT LLM AND SUPPORT 
SPECIFIC IE RETRIEVAL 

Function: create_prompt 
Description: return the required information from the 
relevant passages 
def create_prompt(query: str, retrieved: list[str]): 

 retrieved = [f"- Passage {i}: {x}" for i, x in 
enumerate(retrieved)]  
       retrieved = "\n".join(retrieved) 
prompt = f""" You are an assistant for a researcher 
working at the intersection of additive manufacturing and 
machine learning. Your goal is to help the researcher find 
and distill significant information in a scientific paper. To 
this end, answer the following triple-backtick delimited 
query from 404 the researcher:  
``` {query} ```  
To answer the question, use the following passages from 
the paper. If there is no information in the passages that 
answers the question, write "I cannot answer that." 
{retrieved} 
""" 
 
return prompt 

 
5. RESULTS AND DISCUSSIONS 

The results from the case study are divided into two 
categories. Table 2 shows the improvement in the ranking of  
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TABLE 2: IMPROVEMENT IN SIMILARITY RANKING FROM FIRST TO LAST PAPER IN THE CASE STUDY. THE COMPARISON IS 
DONE BY SELECTING A RANDOM PAPER AND APPLYING DEFAULT RETRIEVALS. THE RESULTS FROM DEFAULT RETRIEVALS 
AND FINAL CUSTOMIZED RETRIEVALS ARE COMPARED. AS EVIDENT FROM THE RESULTS, THE INITIAL RANKING LEADS TO 
IRRELEVANT PARAGRAPHS WITH VARYING SCORES WHERAS THE CUSTOMIZED RETRIEVALS LEAD TO TOP RELEVANT 
PARAGRAPGH WITH REQUIRED INFORMATION 

IE 
Category 

Initial 
Ranking 

Final 
Ranking 

Data 
Relevant 

 

Model 
Relevant 

 

 

Sensing 
Relevant 

 
 

System 
Relevant 

 
 

similarity across the four information categories. The passages 
are selected from one random paper out of the 100 and its most 
relevant paragraphs for four categories are shown against 
starting/default retrievals as well as the customized retrievals 
after the AM researchers went through the 100 selected papers. 
The improvement in the similarity ensures that top matches to a 
selected retrieval contain relevant paragraphs with the required 
information. Appendix A shows the default retrievals associated 

with four information categories representing AM+ML literature 
that were used. 

The second set of results represents the performance of the 
downstream global classifier on the multi-label paragraph 
dataset. The classifier was trained on a diverse set of ML-driven 
AM literature and its ability to classify represents initial success 
in building the global classifier. Table 3 represents the test 
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performance of the Random Forest classifier in terms of 
precision, recall, and F1 score.  
 
TABLE 3: CLASSIFICATION REPORT OF THE RANDOM 
FOREST MODEL ON TEST SPLIT OF PROCESSED AND 
RELEVANT PARAGRAPH DATASET. 0, 1,2,3 CORRESPOND TO 
DATA, SENSING, MODEL, AND SYSTEM CLASSES 

Class Precision Recall F1-Score Support 
0 0.85 0.79 0.82 121 
1 0.84 0.89 0.87 110 
2 0.88 0.90 0.89 101 
3 0.86 0.90 0.88 49 

 
Micro 

avg 
0.86 0.86 0.86 381 

Macro 
avg 

0.86 0.87 0.86 381 

Weighted 
avg 

0.86 0.86 0.86 381 

Samples 
avg 

0.84 0.86 0.83 381 

 
The similarity percentage fluctuates across paragraphs and 

is sensitive to their length. Moreover, the current approach lacks 
a threshold to define “good enough” similarity for relevant 
paragraphs. Similarly, the developed classifier is relatively 
simple since the post-process dataset is small as compared to 
those used in deep learning models of textual data. A higher-
capacity global classifier requires more labeled data. For the next 
100 papers, authors expect the effort to be significantly lower 
due to already customized retrievals. The options to generate 
synthetic data can be considered as well. In addition to increasing 
the data quality and quantity, irrelevant paragraphs need to be 
considered to further refine classifier boundaries. 

 
6. CONCLUSIONS AND FUTURE WORKS 

Inspired by the increasing frequency of research into data-
driven solutions of AM challenges, we propose an information 
extraction framework powered by LLMs and built around 
human-centered considerations. The framework is divided into 
three components namely base IE system, classification tier, and 
the query tier whereas the query functionality is also integrated 
into the base system. The tool enables continuous update of the 
database representing a specific scientific domain while allowing 
domain experts to iteratively customize retrieval for LLM-based 
IE. The tool is deployed on the web and has restricted 
development access at the moment. We carried out a case study 
by building a library of 100 ML-based AM research articles and 
going through them to manually label and validate paragraph 
containing key information belonging to four categories namely 
data, model, sensing and system. We confirm the gradual 
effectiveness of customizing retrievals as we progress through 
the database. Moreover, the relevant paragraphs labeled as a 
result of retrieval customization were downloaded and used to 
train a shallow multi-label classifier. The results of classification 
on the test set indicate that it is possible to develop a global 

classifier for a given domain thereby significantly expediting the 
information filtering step. 

The future works include: 
- Validating the prototype tool and proposed framework 

in another design and manufacturing subdomain. 
- Defining methods and metrics to benchmark IE 

efficiency and effectiveness as compared to existing 
tools and approaches. 

- Introducing a notion of similarity threshold for relevant 
paragraphs in design and manufacturing scientific 
literature. 

- Opening the tool to the broader design and 
manufacturing community to gather feedback. 
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DEMO OF PROTOTYPE TOOL 

https://www.youtube.com/watch?v=gM7rFLmJEH0 
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APPENDIX 
 
A-1: DEFAULT POSITIVE QUERIES OF DATA RELEVANT 
RETREIVAL 
 

 
 
 
 
A-2: DEFAULT POSITIVE QUERIES OF MODEL RELEVANT 
RETREIVAL (SHOWN PARTIALLY) 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
A-3: DEFAULT POSITIVE QUERIES OF SENSING RELEVANT 
RETREIVAL 
 

 
 
 
 
A-4: DEFAULT POSITIVE QUERIES OF SYSTEM RELEVANT 
RETREIVAL 
 

 
 
 


